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Abstract -

Machine control systems are advancing side by side with
the adoption of 5G and growing trends of the internet of
things (IoT) has made autonomous excavators more ubiq-
uitous. The autonomous excavators have gained significant
interest in the earthworks area, due to their enhanced pro-
ductivity for long hours, safety, space exploration, mining
and construction work. However, A great amount of effort is
required to address many existing challenges such as adap-
tive movement and control, task planning (digging, moving
debris, etc.), collaborative work with other machines and hu-
mans. In this study, we review the state of the art and provide
artificial intelligence (AI-) driven road map for implement-
ing a complete autonomous framework for the earth-moving
machine to our test platform ‘Smart Excavator’. Further-
more, the challenges and required effort to implement the
framework are also discussed in comparison with existing
literature.
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1 Introduction
The automated and autonomous excavators can be seen

as a logical outcome, or at least enabled by, engineering
mega-trends namely AI, automation and , IoT, and Space
exploration. In one sense we can classify an excavator as
a manipulator that is working on the field, using IoT and
3D models and control hydraulics for digging; however,
if this would be the case self-moving excavators would
already be plenty in the field. What is lacking from this is
a simplified view of the complexity of the always-changing
work environment where the excavator needs to smoothly
operate. All this still while maintaining safety and fleet
capabilities with machines and humans.
Makkonen et al. suggested that road designer’s design

models (3D surface) can be used as a source for path gen-
eration for excavators [1]. High usage of machine control
systems in earth-moving machinery gives effortless access

to target 3D surfaces, real-time localization, and kinematic
positioning of the excavator. Given that this kind of ex-
cavator is also part of IoT, that makes the autonomous
excavator is already capable of updating the information
about its activities and processes to the network.
The operational performance of excavators is continu-

ously being improved. As it holds a great potential mar-
ket for construction engineering area, where earth-moving
machines require planning and precise control [2] to ex-
ecute various tasks from trenching to larger-scale opera-
tions. For example, founding and constructing the support-
ing layers of the highway. The effective operation time of
the excavators in construction is maximized in the major-
ity of cases to cut down the cost of building, which holds a
potential challenge and opportunity for automation-based
excavators.
The automation level for excavators have been catego-

rized into various types, the most common are, i) human-
controlled machines, ii) remote-controlled machines, iii)
semi-autonomous machines, iv) fully-autonomous ma-
chines [3, 2]. . The automation and autonomy traits
in excavators can however be increased, considering the
ongoing challenges in construction engineering and earth
moving machines area. Apart from the heterogeneous and
circumstance-dependent characteristics of the terrain, en-
suring the safety and efficiency of thesemachines is a great
challenge toward fully autonomous excavators [3].
In this study, we propose a framework to implement

AI-driven autonomous excavators using the data streams
from the excavator itself in real-time. The study is one of
the first attempts, to consider both edge and cloud-driven
challenges and solutions for implementing an autonomous
excavator system. Considering, the low latency and real-
time processing challenges, a hybrid approach is proposed,
see Section 4. First, we identify the requirements to im-
plement AI-driven autonomous framework from existing
literature, following that, a framework is proposed. In
addition, the system will be capable of handling drift-
ing scenarios and the occurrence of concept drift while
modeling, which can affect the learning of models and
decision-making.
The rest of the paper is structured as Section 2 details
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the state of the art, Section 3 lists the requirements to im-
plement the autonomous framework. Section 4 describes
the framework and Section 5 presents a use case for the
framework. Finally, we discuss the limitations and con-
crete challenges along with the conclusion.

2 Literature Review
2.1 Methods for autonomous excavators

In previous years, various toolboxes and methods were
introduced for autonomous excavators. Back in 1998, the
Robotic Institute at Carnegie Mellon University, USA,
created an excavator model capable of finding and fill-
ing up the intended truck without any human interaction
[4]. Similarly, Lancaster University’s intelligent excavator
(LUCIE) [5] demonstrated several automated robotics fea-
tures in the excavation process e.g. controlling motion of
the bucket. Unlike traditional excavators, autonomous ex-
cavators nowhave become perceptive, as they are equipped
with cutting edge sensors, cameras, a global positioning
system (GPS), lidar, radar, and laser beams mostly [3, 6].
Such equipment enhances the autonomy of the excavators,
as they can collect raw data, and analyze the data using
machine learning to develop an understanding of the des-
ignated environment.

A study by [6], proposed a real-time multi-frame Long
Short-Term Memory (LSTM-) based method with a You
Only Look Once (YOLO-)v2, as the main backbone to ac-
cumulate useful information from image frames for more
robust image detection, with decreased computational ef-
fort. The developed approach resulted in near human-level
accuracy to detect different types of objects under varying
light conditions, lots of dust, etc. However, the perfor-
mance of the method decreased in low light conditions.

Another study by [7], focused on the soil excavation
operation of autonomous excavators, to maximize the per-
formance of the digging process like an expert human.
With the varying soil dynamics, capturing soil character-
istics by adaptive models can be challenging. Dynamic
Movement Primitives (DMP), was adopted to tackle the
complex soil dynamics. In particular, DMP uses virtual
dynamics approach to structure and preserve the true tra-
jectory shape to the finishing point i.e. transition to move
and dump excavated material [7]. The implemented al-
gorithm effectively learns the best position trajectories,
ensuring excessive adaptation to changing soil properties
with additional safety and robustness.

There are different ongoing challenges to operate ex-
cavators autonomously such as, variable environmental
conditions, weather, changing lighting conditions, drop-
ping piles of materials to a place or truck, digging of the
material with its natural integrity, and avoiding collisions
with the objects in construction site [8]. In this regard, a

new architecture and algorithms were proposed by [8] for
autonomous excavators. The system was built by a cen-
tral perception module, integrating perception, planning,
and control. The perception module fuses the information
from equipped 3D-Lidar and camera outputs, to perceive
3D models of material, dumping site, obstacles, and oth-
ers. The system was also capable of handling sudden
changes in the environment to provide safety e.g. move-
ment of animals on construction sites.

2.2 Applications of autonomous excavator

So far automation is used to streamline the earthworks
on infrastructure and construction sites in most commer-
cial solutions [9, 10, 11] using GNSS localization and
boom-mounted IMU sensory to pinpoint the bucket or
blade of the machinery. This allows the operator to mea-
sure grades and slopes with themachine itself and removes
the need for laborious marking the site with physical signs
as the operator can view the plans besides the machine
from the system monitor. Now gaining popularity are also
cloud-based management services like [12] which are al-
ready widely in use on Finnish public construction sites to
manage the full project. Cloud services enable flexibility
as any changes made and uploaded to design models or
other information are immediately available to everyone
involved including the excavator operators. It also helps to
reducematerial and fuel expenses aswell as labor costs and
machine hours as the service eases machine management
on a whole scale.
The machine manufacturers [9] and automation system

providers [10, 11] are also introduced grade control to
semi-automatically excavate grades and slopes with im-
proved precision. The operator controls the joystick and
automation keeps the bucket on grade. Semi automation
controls also include depth control for preventing over-
cutting. A study by [10], have also showcased safety
functions to limit the working area by virtual walls to pre-
vent collisions, when working on tight construction areas
and weighting system for the bucket to have better mate-
rial management on truck loading in construction or for
example in gravel pits.
Japan institute [13] stated that automatic and unmanned

construction machines could be used to sort debris in re-
construction sites to remove or restore broken roads or
structures or demolish or rebuilt damaged houses in places
that cannot be safely accessed by humans after disasters.
Also, automation could be used in highly repetitive job
sites in construction on tasks like truck loading to let hu-
man operators focus on more challenging tasks.
The Space programs [14] introduced plans to send un-

manned construction machinery to explore the surface
and build lunar and Mars stations before sending manned
flights. Automatic excavation of possibly unknown soil
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materials is a crucial task to establish any buildings and
efficient usage of the local materials would greatly reduce
the payload of the flights.

3 Requirements for AI driven autonomous
excavators

3.1 Intelligent Control

An autonomous excavator requires adaptive and robust
control procedures to be able to operate with full control
along with an understanding of its surroundings that is in
constant change. The remote-controlled excavators in past
have used feedback linearization technique, impedance
controller, non-linear proportional-integral controlled for
optimized interaction.
Usually, for self-operation, the source of movement is

hydraulic power, but lately, electric machinery like [15]
are on the rise. The base excavator can move and rotate
reasonably freely on thework area using tracks or all-wheel
drive. The end-effector also has 4 degrees of freedom as
the cabin rotates and the boom, arm, and the coupler for
the bucket are all linked together with a rotational axis and
have actuators to manipulate them. When an excavator is
used as a multipurpose tool a rototill adds versatility by
adding 2 more DOFs for the end-effector. To fulfill the
requirement for control of its movements, all kinematics
links from the base to end-effector should be measured
and the movements performed in a precise and accurate
method enough.
Understanding the surroundings is mandatory for au-

tonomous machines in general and can even be the key
difference between AI-controlled machines and normal
machines as humans have limited situational awareness
and cognitive load. Typical sensor solutions for this are
2D cameras with various sensor types like RGB, heat, and
multi-spectral; for scanning and modeling the environ-
ment 3D stereo cameras and lidars are typically used. For
localization on the work site GNSS-location systems are
most used, with two antennas they provide heading and
angle measurements in addition to location data. In larger
job sites, local fixed reference stations provide correction
signals to the localization to achieve centimeter-level pre-
ciseness.
Specific to autonomous construction work machines

like an excavator, a dynamic site-wide plan to follow is
provided and AI needs to be able to full fill the plan. Typ-
ically this plan comes from humans like road designers,
but there is no reason that this plan is also from AI in the
future. The plans are typically presented in CAD models,
but the surge of structured digital information in the forms
of building information modeling (BIM) is fast gaining
ground also outside the Nordic countries.

3.2 Motion Planning

The earth moving machines in general for earth cutting
and standard movements require force feedback to sense
the surrounding environment especially the processed soil.
Force control also would help to havemore advanced load-
ing and other movements as skilled human operators also
use wide haptic feedback from the machine. The force
feedback could be also used in tandem with vision sen-
sors in events, where continuous movement and digging
is performed with a high chance of collision with static
objects in excavation site e.g. collision with another ma-
chine, falling to a ditch or a dump, hitting a tree or a rock,
or others. The force feedback in excavation sites can be
provided using sensor-based data collection adjoined with
real-time sensing and AI-driven learning methods.
Several scientific studies have tried to address the chal-

lenges of nominal motion planning in excavation sites. A
study by [4] proposed an autonomous loading system us-
ing a perception engineering-based approach, using laser
scan to detect truck model and soil without change of tex-
ture. Similarly, a study by [16] introduced a framework for
each work machine to minimize human involvement in the
excavation site. In addition, different approaches and al-
gorithms have been experimented to optimize the process
of planning and perception for earth-moving machines.

3.3 Simulation Environment

The major reason to use simulation and virtual en-
vironments is safety and real-time tests, mapping, and
learning in continuously changing environments. In a
study by [17], excavator Menzi Muck M545 simulated
the excavation process using a planning and control ap-
proach. The excavator was able to reliably fill buckets
using force trajectory-based dig cycles. [17]. In another
study, a co-simulation framework was developed based on
MATLAB-SIMULINK for modeling controller and OP-
NET to simulate communication network and optimize the
remotely controllable excavator [18]. Simulation-based
methods are also prominent to understand the landscapes
and changes in the environment using sensor data [2].
The simulation environments integrated with the com-

plete autonomous excavation system are useful to demon-
strate the fieldwork virtually, along with planning and
monitoring. As the earth moving machines are equipped
with sensors like IMUs, a global positioning system (GPS),
pressure sensors, and possible weather sensors, and oth-
ers. The sensor data can be utilized to develop perception-
based autonomous excavation systems using artificial in-
telligence approaches. Therefore, developing and integrat-
ing simulation tools or environments with an autonomous
excavation framework can help in planning andmonitoring
data in real-time. Lastly, the simulation environment can
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be effective for monitoring the sensor feeds continuously
for detecting the possible drifts in streaming data [19].

3.4 Tools and Frameworks

Construction work-specific autonomous excavation ma-
chines require dynamic technology solutions to adapt to
diverse characteristics of soil and building materials, ac-
companied by a coherent modeling plan. Typically, this
plan comes from expert individuals in the respective field
such as road designers, civil engineers, and urban planners.
Therefore, it should be possible that future AI-driven in-
telligent solutions could learn from historical plans and
construction sites, and do minor adjustment to the con-
struction plans such as mass swap, layer thicknesses with
minimal or no human intervention. In this regard, the au-
tonomous earthwork machines require dynamic and light
computational tools and frameworks, which can be used in
both cloud and edge architectures for effective excavation
solutions.

The excavation plans are typically presented in CAD
models, but the surge of structured digital information in
the forms of building information modeling (BIM) is fast
gaining ground both in Nordic countries and outside as
well. The equipped sensors with earth machines are con-
figured using CAN bus and other platforms. The sensed
feeds from sensors are often further pre-processed and
explored using MATLAB/Simulink, standard python li-
braries, and different simulation tools. With cloud and
edge-based platforms low latency computing and analysis
tools are also gaining prominence for generating insights
e.g. at cloud end Apache Spark, Apache Kafka, Kibana,
and others [20]. However, as with increasing trends of
IoT and implementation of 5G, the earthwork machines
would need more edge computing capabilities. Therefore,
light computational tools and frameworks with the ability
to handle low latency data streams are needed.

4 Theoretical Framework
4.1 Framework of AI driven Autonomous Excavator

The proposed framework will be implemented on hy-
brid cloud and edge architecture, considering the ongoing
trends of IoT and the implementation of 5G. In this regard,
we propose an abstraction level hybrid architecture that
constitutes both edge and cloud-based solution require-
ments, please see Figure 2. and Section 4.2.

The first block of the AI-driven framework is "Sensing
and Planning", which is designed based on the idea of sens-
ing and adaptive learning in real-time, please see Figure 1.
It first utilizes the sensors to make model adjustments in
both local and global aspects. Then, the tasks are created
by the task planner based on the work maps and building
information models. The data from sensors such as laser

Figure 1. Framework for AI-drivenAutonomous Ex-
cavator, adapted from [21]

sensors and 3D Lidar sensors will be used for developing
adaptive learning methods for intelligent movement. In
addition, as data from sensors is continuously changing
and real-time in nature, therefore, due to changes in sta-
tistical properties of data, a concept drift can occur [19].
The drift is often due to the malfunction of the sensor
or actuator. Such changes in the data stream can result
in ineffective predictions from learners e.g. less efficient
object detection for collision-free movement. Therefore,
concept drift detection and adaptionmethods are also a key
requirement for learners operational in real-world settings.
The second block "Control and Operation" in the frame-

work incorporates and implements the sensed feeds and
knowledge from learners to perform excavation opera-
tions in a real environment. In this regard, the require-
ments described in Section 3. to adapt and characterize
the dynamic nature of excavation terrain is handled by
using the control procedures from implemented models.
Furthermore, collision is possible on excavation sites due
to animal movement, object movement, truck movement,
and debris., which requires collision detection and path
planning methods. All previously mentioned procedures
are controlled and managed in this layer. Additionally,
the likelihood of device and machine failures is possible,
which can make the autonomous operation by excavator
impossible. Therefore, a hybrid approach is implemented
for controlling the excavator i.e. in case of failure or sys-
tem shutdown, an administrator on site can flexibly take
over the machine. For such cases, an alarm system will be
implemented using the sensed feeds from the machine that
can be enabled to receive alerts and view the performance
of themachine using a tablet or othermobile device, please
see Figure 2.
The third block "Communication and Integration" con-

stitutes control and monitoring tasks during the excavation
operations at a respective site. We propose to integrate and
continuousmonitoring and simulation systemwith the pre-
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vious two mentioned technology stacks. Keeping in view
the new methods of communication aided by 5G support
and simulating sensor feeds can make the operations of
excavators more efficient. Additionally, the integration
of developed intelligent packages for adaptive control and
movement of excavators is executed in this block. This
creates the possibility to monitor and simulate the opera-
tions before going to the excavation site, as well as allows
continuous monitoring facility during real-world opera-
tions.

4.2 Edge AI architecture for Autonomous Excavator

As the world is rapidly moving towards IoT and advance
communication paradigms. With the increased number of
interconnected physical devices, developments are being
made in edge computing to handle the sheer amount of data
being shared. There are several application areas from
edge computing assisted IoT, which includes household
IoT, industrial IoT, autonomous vehicles, and 5G networks
[22].
In industrial IoT, there are several opportunities avail-

able which include the capability to continuously monitor
production lines in real-time using sensing feeds from a
multitude of sensors [22]. For example, the data produced
from equipped vibration sensors from an excavator’s pump
can help in distinguishing safety levels using mechanical
vibrations. Similarly, the multitude of sensors can also be
used for collision-free movement, identifying the position
of excavators, and acquiring the movement routes of other
vehicles in the vicinity.
The overall approach to implement AI-driven au-

tonomous excavators using edge computing approach is
illustrated in Figure 2. The excavator machine is equipped
with a myriad of sensors that are continuously producing
and pushing data to the database at cloud and edge. The
data stored in the cloud is further used to simulate and
generates insights to better monitor and control the ex-
cavators in exceptional situations. Additionally, the data
at cloud is used to model and train learners for adaptive
control and collision-free movement, as described in Fig-
ure 1. The sensed data can however further be utilized
to ensure security and for prompt administrative response
in case of malfunctioning or hazardous situations. For
example, if the autonomous module of the excavator goes
offline and at the excavation site their exceptional circum-
stances (falling of debris or other vehicular movements
etc), before going offline the system will send an alert to
the mobile or tablet device of the administrator, and the
excavator can be switched to manual mode. Following
that, the learned knowledge is then transferred to an edge
network that stays persistent with excavators, reducing the
latency issues. However, if a concept drift occurs in drawn
predictions, then the new information is pushed at the edge

from the cloud to retrain the learners. The architecture is
further extended by providing command and control using
smart devices such as mobile phones and tablet devices.

Figure 2. Basic Edge AI driven architecture for au-
tonomous excavator

5 Use Case
In our developedmodel-based autonomous control, Ma-

chine Control Model (MCM) is used for the trajectory
generation for the Smart Excavator. In these examples, the
models are in LandXML file transfer format saved using
Finnish Infra model standards. For adaptive development
and testing purposes, the visual programming language
Grasshopper included inRhinoceros CAD software is used
to model the digital twin of the Bobcat E85 Robotic Exca-
vator and to load and partition the lines and triangulation
from the Inframodel for the trajectory generation.
The use of Grasshopper allows easy high parametriza-

tion of the trajectories. The software includes various
ready function blocks from basic calculations to graphics
computation. Also, own custom blocks can be written
with custom expression or C sharp script, python script,
or VB script. The visual preview of the digital twin in
Rhinoceros is useful for examining the trajectories for er-
rors before testing them with the actual robotic excavator.
A major drawback is that there seems not to be a quick
workaround to convert created grasshopper code to the
standalone program to the Smart Excavators control sys-
tem since code often contains blockswith various scripting
languages. The Grasshopper itself is rather dependent on
Rhinoceros because its core product uses many geometry
functionalities provided by the CAD software.
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The design lines from the Machine Control Models are
used to define the working area and to compute cartesian-
space paths to cut themodel surface. Adjacent and parallel
lines are filtered and when necessary, divided according
to working region. The bucket paths are then computed
between those lines to excavate the designed surface. We
also use the lines from the model to create surfaces with
Rhino’s loft tool instead of using the triangulated surface
from the model to avoid imprecision and confusion in
the edges of the triangles. Alternatively, para-metrically
controlledBezier curve-shaped shoveling paths are created
in grasshopper and the endpoints are linked to soil surface
for mass excavations.

To define the trajectories, the path’s curve or line is
divided into segments which are then evaluated with the
associated surface. The evaluation gives a surface normal
vector for each segment. Every path point is translated
to the excavator’s local coordinates. The formed frame
for each path segment is yet compared to the excavator’s
mainframe to compute Euler angles. The path is then con-
verted to joint space using inverse kinematics. After that,
with information from the surrounding environment and
cooperating vehicles such as a dumpster, additional joint
space movements are generated to complete the workflow
and to dump the excavated material to the defined location.
For example, onto a truck bed.

The trajectories are tested and analyzed with the 8,5-
ton Bobcat Smart excavator. The excavator has retrofitted
electric valves to control the hydraulics. An on-board PC is
in charge of controlling the valves and forwarding signals
from joysticks and other controls and data from boom IMU
sensors. It is connected to an industrial PC with a CAN
bus over a local 5 GHz wireless network. The industrial
PC runs Matlab/Simulink controller program which has a
separate controller for each actuator with online adjustable
tuning. The controller has three modes: remote control,
teach-in to record and repeat workflow, and automatic con-
trol for executing the model-based trajectories. So far the
automation tests have included different special-shaped
surfaces like stairs and various slopes to iterate and tune
the trajectories and controllers to better precision. Exper-
iments to compare excavation aboard, remote controlling,
and automation have been also planned.

6 Discussion
Artificial intelligence has been identified as a driver for

sustainable development [24]. Within the autonomous
vehicle community and industrial IoT, the main considera-
tions of sustainability are resource optimization and safety
[24]. Intelligent automation saves resources when opti-
mal real-time planning can be made through intelligent
algorithms for enhanced fuel efficiency, leading to fewer
emissions. We can recognize different layers of planning:

Figure 3. Smart excavation in progress at test site in
winter conditions[23]

1) construction site planning 2) fleet intelligence 3) indi-
vidual vehicles. The construction site planning could op-
timize material movements on-site to maximize material
re-usage andminimize unnecessary loading, transport, and
other material manipulation. Connected vehicles operat-
ing in fleets can optimize their cooperation to maximize
activity and reduce wait time and overall work duration.
For example, excavators and front loader can synchronize
their operations to optimize piling or truck loading.
Automated monitoring of vehicles can be used in im-

proving vehicle maintenance schedules. Environmental
measurements like emission particles, temperature, and
moisture can also be used to create climate-friendly earth
moving machines by studying data generated from sen-
sors and operational insights of existing excavators. Ad-
ditionally, cloud computing and edge computing can play
a pivotal role in produce climate-friendly and sustainable
machines. As we know, the data generated from IoTs,
and data from vehicular sensors becomes larger each day,
therefore, generating insights and modeling the respective
data can aid in achieving sustainable societal goals. In this
study, we proposed a hybrid approach that includes both
edge and cloud computing paradigms to retain historical
information and help in quick real-time decision making
for smart and autonomous excavators machines, please see
Figure 2.
The operation of individual vehicles can be optimized

for efficient and energy prudent trajectories. Accuracy is to
be improved where needed. Few centimeters of improve-
ment on preciseness can save a lot of work and material
on a bed of kilometers long highway but does small-scale
landscaping need such accuracy? To be able to complete a
complex planning task with multiple agents, task decom-
position and task distribution need to be modeled. The
edge architecture designed in this paper is designed to be
used to leverage the high-volume data produced by these
intelligent agents.
The construction machinery is increasingly equipped
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with various sensors to increase situational awareness of
the operator. However, as mentioned earlier, presenting
for example raw images from multiple different cameras
could swiftly overwhelm the cognitive capacity of a human
operator. Therefore handling of the sensor data should be
somewhat automated and fused to form more clear and in-
tuitive presentation using for example means of extended
reality (XR). Also, adaptive AI control methods can be
overwhelmed by too wide data streams. First and fore-
most irrelevant data or concept drift can slow down and
even completely stall or mislead possible learning solu-
tions [19].
The edge computing provides capabilities to access

stored data, computing resources, and access with low
latency, finding the closest available resources to the ma-
chines e.g. database at edge at the roadside unit, a database
of an edge machine (car, truck, etc.) using a vehicle to ve-
hicle communication [25]. Moreover, the infrastructure
solutions which are used in edge computing can collect
local resources efficiently in lesser time when compared
with traditional computing paradigms. However, the con-
cept itself is relatively new and has received prominent
attention from both academia and industry as well as in
transportation e.g. intelligent vehicles [25], therefore still
requires exploration.

7 Conclusion

Industrial IoT has gained prominence in past decades,
especially when it comes to construction engineering, the
concept of "smart excavators", "intelligent excavation sys-
tem", and "autonomous excavators" is on the rise in both
academia and industry to produce industrial-grade earth
moving machines. This article presents a approach to im-
plement AI-driven intelligent framework for autonomous
excavators after conducting a state-of-the-art review. Con-
sidering the ongoing advancements and challenges in ICT
concerning autonomous and intelligent vehicles. A hybrid
architecture is proposed along with three main technology
blocks to implement AI-driven autonomous framework for
smart excavation, Figure 1 and 2.
The work presented in this study is still at its initial

stages and shortcomings are expected. At the moment,
the presented framework for AI-driven autonomous exca-
vators has some limitations, e.g. the aspects to ensure the
effectiveness of the system are not well covered, privacy
and security concerns still require great effort. As with
the implementation of 5G and new generation hardware,
privacy and security constraints will also take a shift and
will require advanced efforts.
In the future, we plan tomove forwardwith development

and present a fully implemented AI-driven autonomous
framework with rigorous tests.
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